Scientific articles published in peer-reviewed journals

  1. Mohammadi, A., Cowie, A.L., Anh Mai, T. L., Anaya de la Rosa, R., Kristiansen, P., Brandão, M. and Joseph, S. (2016). Biochar use for climate-change mitigation in rice cropping systems. Journal of Cleaner Production, 116: 61-70.
  2. Cornelissen, G., Pandit, N. R., Taylor, P., Pandit, B. H., Sparrevik, M., and Schmidt, H. P. (2016). Emissions and char quality of flame-curtain “Kon Tiki” kilns for farmer-scale charcoal/biochar production. PloS one, 11(5), e0154617.
  3. Mohammadi, A., Cowie, A.L., Anh Mai, T.L., Anaya de la Rosa, R., Brandão, M., Kristiansen, P. and Joseph, S. (2016). Quantifying the greenhouse gas reduction benefits of utilising straw biochar and enriched biochar. Energy Procedia 97, 254-261.
  4. Atile Kibret, H., Venkata Ramayya, A., and Belay Abunie, B. (2016). Design, fabrication and sensitivity testing of an efficient bone pyrolysis kiln and biochar-based indigenous fertilizer pelletizing machine for linking renewable energy with climate smart agriculture. Asian Research Publishing Network (ARPN). Journal of Engineering and Applied Sciences. Vol 11, No. 12. ISSN 1819-6608.
  5. Obia, A., Børresen, T., Martinsen, V., Cornelissen, G., and Mulder, J. (2017). Vertical and lateral transport of biochar in light-textured tropical soils. Soil and Tillage Research 165, 34-40.
  6. Mehmood, K., Chávez Garcia, E., Schirrmann, M., Ladd, B., Kammann, C., Wrage-Mönnig, N., Siebe, C., Estavillo, J.M., Fuertes-Mendizabal, T., Cayuela, M., Sigua, G., Spokas, K., Cowie, A.L., Novak, J., Ippolito, J.A., and Borchard, N. (2017). Biochar research activities and their relation to development and environmental quality: A systematic review. Agronomy for Sustainable Development. 37: 22.
  7. Gómez, X., Ladd, B., Muñoz, A., and Anaya de la Rosa, R. (2017). Determinación del efecto del biocarbón en movilidad del mercurio en sistema suelo-planta. The Biologist Lima. Vol 15, No. 1.
  8. Smebye, A. B., Sparrevik, M., Schmidt, H. P., and Cornelissen, G. (2017). Life-cycle assessment of biochar production systems in tropical rural areas: Comparing flame curtain kilns to other production methods. Biomass and Bioenergy, 101, 35-43.
  9. Mohammadi, A., Cowie, A.L., Anh Mai, T.L., Brandão, M., Anaya de la Rosa, R., Kristiansen, P., and Joseph, S. (2017). Climate-change and health effects of using rice husk for biochar-compost: Comparing three pyrolysis systems. Journal of Cleaner Production 162, 260-272.
  10. Kamau, S., Barrios, E., Karanja, N.K., Ayuke, F.O. and Lehmann, J. (2017). Spatial variation of soil macrofauna and nutrients in tropical agricultural systems influenced by historical charcoal production in South Nandi, Kenya. Applied Soil Ecology. 119, 286-293.
  11. Ladd, B., Dumler, S., Loret de Mola, E., Anaya de la Rosa, R., and Borchard, N. (2017). Incremento de rentabilidad en produccion del maiz en Peru: N-fertilizantes y biochar. The Biologist Lima. Vol 15, No. 2.
  12. Cornelissen, G., Jubaedah, Nurida, N.L., Hale, S.E., Martinsen, V., Silvani, L., and Mulder, J. (2018). Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Science of the Total Environment. 634, 561-568.
  13. Asfaw, E., Nebiyu, A., Bekele, E., Ahmed, M., and Astatkie, T. (2018). Coffee-husk biochar application increased AMF root colonization, P accumulation, Nfixation, and yield of soybean grown in a tropical Nitisol, southwest Ethiopia. Journal of plant nutrition and soil science, 182, 419-428.
  14. Namoi, N., Pelster, D., Rosenstock, T.S., Mwangi, L., Kamau, S., Mutuo, P., and Barrios, E. (2019). Earthworms regulate ability of biochar to mitigate COand N2O emissions from a tropical soil. Applied Soil Ecology, 140, 57-67.
  15. Kamau, S., Karanja, N.K., Ayuke, F.O. and Lehmann, J. (2019). Short-term influence of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize growth. Biology and Fertility of Soils, 55, 661-673.
  16. Melaku, T., Ambaw, G., Nigussie, A., Woldekirstos, A.N., Bekele, E. and Ahmed, M., 2020. Short-term application of biochar increases the amount of fertilizer required to obtain potential yield and reduces marginal agronomic efficiency in high phosphorus-fixing soils. Biochar, pp.1-9.
  17. Owsianiak, M., Lindhjem, H., Cornelissen, G., Hale, S.E., Sørmo, E. and Sparrevik, M., (2020). Environmental and economic impacts of biochar production and agricultural use in six developing and middle-income countries.Science of The Total Environment,142455.
  18. 18. Liu, X., Wang, H., Liu, C., Sun, B., Zheng, J., Bian, R., Drosos, M., Zhang, X., Li, L. and Pan, G., (2020). Biochar increases maize yield by promoting root growth in the rainfed region. Archives of Agronomy and Soil Science, pp.1 -14.
  19. Liu, C., Sun, B., Zhang, X., Liu, X., Drosos, M., Li, L. and Pan, G., (2020). The Water-Soluble Pool in Biochar Dominates Maize Plant Growth Promotion Under Biochar Amendment. Journal of Plant Growth Regulation, pp.1-11.